Roadmap to 5G: Evolution of 4G, 5G Architecture, Network Strategy and Planning

Published: February 2017   Pages: 169
License Types Available

Purchase Now

Other Ordering Options


Currently, about 15% of global wireless customers utilize 4G. While 5G continues to get a substantial amount of attention, 4G technologies are continuing to improve thanks to various enhancements such as carrier aggregation and other methods. Technology improvements for LTE are ongoing as it will continue to be relied upon for many applications and services for a long time. Accordingly, vendors to continue to optimize LTE capabilities such as improved uplink capacity to support video and wireless communication to cloud-based applications. LTE adoption will continue at a fast pace with many innovations overlapping with 5G operations.

This report investigates the evolution of wireless networks towards 5G including architecture, network strategy, and planning. The report evaluates R&D efforts from major infrastructure providers including the so called fractional versions of 4G such as 4.5G, 4.5G Pro, and 4.9G. The report also analyzes related supporting technologies such as Mobile Edge Computing (MEC). All purchases of Mind Commerce reports includes time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Target Audience:

  • Wireless service providers
  • 5G infrastructure suppliers
  • Wireless device manufacturers
  • Big Data and analytics companies
  • Internet of Things (IoT) companies
  • Robotics and Virtual Reality suppliers
  • Enterprise across all industry verticals

Report Benefits:

  • Learn about evolution towards 5G
  • Understand the impact of supporting technologies
  • Identify 5G enabled next generation apps and services
  • Understand how 5G drives a uniform network approach
  • Identify capabilities that will enable entirely new service types

Table of Contents:

1 Introduction
1.1 5G Technologies
1.2 Mobile Spectrum Evolution
1.2.1 1G – 2G – 3G – 4G
1.2.2 4G – 4.5G – 4.5G Pro – 4.9G – 5G
1.3 5G Spectrum Options and Utilization via Low Bands, Mid Bands, and High Bands
1.4 5G Ecosystem Architecture and Planning
1.5 5G Ecosystem Planning: Societal vs. Technology Considerations
2 5G Technology: Network Planning, Implementation, and Applications
2.1 5G Network Planning and Strategic Consideration
2.1.1 LTE Foundation, Device Ecosystem, LAA, and 5G Readiness
2.1.2 Spectrum Sharing and Utilization
2.1.3 Narrowband 5G for Massive IoT
2.1.4 Multi Connectivity Architecture with Small Cell Deployment
2.1.5 Relevance of Mobile IoT Technology: NB-IoT and eMTC
2.1.6 OSS/BSS Architecture for 5G Service Operation
2.1.7 Multi-Antenna and Beamforming Impact
2.1.8 End to End Network Slicing with NFV and SDN
2.1.9 LTE Continuation in 5G Era
2.1.10 Service Design, ROI and 5G Network
2.2 5G Technology Requirement and Network Impact
2.2.1 Network Coverage and Efficiency
2.2.2 Network Spectrum Efficiency
2.2.3 Data Throughput
2.2.4 Connection Density
2.2.5 UR-LLC (Ultra-Reliable Low Latency Communication)
2.2.6 Network Energy Usage
2.2.7 Improved Battery Life
2.2.8 Improved Flexibility in Air Interface and Versatility
2.2.9 Massive MIMO
2.2.10 mmWave Technology
2.2.11 Integration of Access and Backhaul
2.2.12 D2D Communication
2.2.13 Flexible Duplex: FDD and TDD
2.2.14 Multi-Antenna Transmission Scenario
2.2.15 Decoupling User Data from Control System
2.3 5G Technology and Network Architecture
2.3.1 Massive MIMO and Beamforming
2.3.2 Cloud RAN
2.3.3 Broadband Spectrum and Satellite
2.3.4 5G New Radio (NR)
2.3.5 Software Defined Air Interface
2.3.6 Network Function Virtualization (NFV)
2.3.7 Self Organizing Network (SON) and Self Healing Network (SHN)
2.3.8 HetNet and H-CRAN
2.3.9 Large-Scale Cooperative Spatial Signal Processing (LS-CSSP)
2.3.10 Software Defined Radio (SDR)
2.3.11 Visible Light Communications (VLCs)
2.3.12 Cross Layer Controller
2.3.13 Cognitive Radios (CRs) and Transmission Technologies
2.3.14 Scalable OFDM and Subcarrier Spacing
2.4 5G Network Implementation
2.4.1 Base Stations
2.4.2 Small Cells
2.4.3 Macro Cells
2.4.4 Baseband Units and RF Units
2.4.5 Mobile Core
2.4.6 Remote Radio Heads
2.4.7 Front-haul and Backhaul Networks
2.5 Strategic Relevance of 4.5G, 4.5G Pro, and 4.9G
2.5.1 Mobile IoT and M2M Communication
2.5.2 Broadcast Services and Immersive Entertainment
2.5.3 Vehicular Communication
2.5.4 Public Safety Network
2.5.5 Smart City Applications
2.5.6 Private Enterprise Network
3 5G Initiatives, R&D, and Field Trials
3.1 5G Strategic Initiatives in Region
3.1.1 Asia China IMT-2020 Promotion Group China National Key Project on 5G South Korea Japan
3.1.2 Europe European Union Framework Project 7 (FP7) European Union Framework Project 8 (FP8) /Horizon 2020 Celtic Plus EIT and Other projects
3.1.3 America
3.2 5G Standardization Initiative and Development
3.2.1 3GPP
3.2.2 5G Americas
3.2.3 ATIS
3.2.4 GSMA
3.2.5 IEEE
3.2.6 ITU
3.2.7 NGMN
3.2.8 TIA
3.2.9 FCC TAC
3.3 5G Trial by Mobile Operators
3.4 5G Spectrum Aspects
3.4.1 WRC – 15 & 19
3.4.2 FCC
3.4.3 5G Americas
3.4.4 CITEL
3.4.5 ITU
3.4.6 GSMA
3.4.7 GSA
4 Conclusions and Recommendations
5 Appendix: Supporting Technologies


Figure 1: 5G Network Features and Underlying Benefits
Figure 2: 4G Spectrum Evolution: 1G – 2G – 3G – 4G
Figure 3: 5G Spectrum Evolution: 4G – 4.5G – 4.5G Pro – 4.9G – 5G
Figure 4: 5G Ecosystem Architecture Components
Figure 5: LTE Foundation Architecture: LTE Advanced and LTE Advanced Pro 3
Figure 6: Licensed Assisted Access (LAA) Uplink Cell Range in Small Cells
Figure 7: Architecture of Shared Spectrum
Figure 8: Spectrum Sharing Prototype on LTE-U/LAA, LWA, CBRS/LSA and MultiFire
Figure 9: Narrowband 5G Path and Standard Release for Massive IoT 42
Figure 10: Multi-Connectivity Structure deployed over Small Cell and Macro
Figure 11: Next Generation OSS/BSS Architecture
Figure 12: Massive Element Antenna in Combination of Phantom Cell and Massive MIMO
Figure 13: Multiple Antenna and Beamforming Impact
Figure 14: Bandwidth and Latency Requirements for 5G Use Cases
Figure 15: WRC 15 and WRC 19 Spectrum Issues in 5G Network
Figure 16: IMT 2020 Requirements for URLLC
Figure 17: Flexible Unified Radio Interface for TTI, Integrated Sub-frame, and Dynamic Uplink and Downlink
Figure 18: Massive MIMO Concept
Figure 19: Massive MIMO: LTE Network to 5G NR Rel. 15
Figure 20: High Spectrum Band at Massive MIMO
Figure 21: Cloud RAN Architecture
Figure 22: Role of Satellite in 5G Communication System
Figure 23: 5G New Radio (NR) Release Timeline
Figure 24: Technology Requirements of 5G NR Standards
Figure 25: Enabling Technology of 5G NR
Figure 26: Mobile Broadband Performance Target in 5G NR
Figure 27: Virtual Cell and UE Centric Mobility in 5G NR
Figure 28: Self-Contained Sub-Frame Design Structure
Figure 29: NFV in H-RAN Solution
Figure 30: Self-Organizing Networks (SONs) in H-RAN
Figure 31: H-RAN Application in 5G Systems
Figure 32: Centralized LS-CSSP Structure
Figure 33: Hybrid Architecture of SDN and SDR in 5G Network
Figure 34: Windowed OFDM Structure
Figure 35: Subcarrier Spacing Bandwidth Structure using FDD & TDD
Figure 36: Mobile IoT Technology and Equipment Categories over 4G and 4.5G
Figure 37: SDL Carrier over LTE Broadcast Service
Figure 38: Multi-Carrier Deployment with LTE Broadcast Carrier
Figure 39: Public Safety Scenario over LTE Network
Figure 40: IMT-2020 Timeline and Process
Figure 41: Requirements of IMT-2020
Figure 42: 3GPP SMARTER Service Dimensions
Figure 43: 3GPP Planned Release Timeline and Technical Specification
Figure 44: IMT-2020 Standardization Timeline
Figure 45: NGMN 5G Initiative Timeline 1


Table 1: Comparison of 5G Spectrum Bands: Low vs. Mid vs. High Bands
Table 2: Components and Functions of OSS & BSS
Table 3: 5G Objectives, Targets, and Technology Efforts
Table 4: European Union FP7 5G Projects
Table 5: 5G-PPP Projects Call-1 131
Table 6: 5GrEEn and 5GIC Projects in EU
Table 7: 5G Project Initiatives in United States
Table 8: Mobile Operators Conducting 5G Trials



Back Top Home Sitemap